
International Journal of  Theoretical Physics, Vol. 29, No. 1, 1990 

Stable Gravity Wave of Arbitrary Amplitude in 
Finite Depth 

Kern E. Kenyon I and David Sheres 2 

Received December 4, 1988 

A combination and modification of two existing methods, which involves balanc- 
ing static and dynamic pressure differences between points along the surface 
and conserving mass through cross sections below the surface in the reference 
frame moving with the phase velocity, is applied to surface gravity waves of 
arbitrary amplitude in water of finite depth. For a given still water depth and 
wave height the method determines in closed form the phase velocity, wavelength, 
and wave profile of the stable wave. The main assumption is that the horizontal 
component of the fluid velocity be independent of depth. The motion is not 
assumed to be irrotational. The wavelength of the stable wave is found to be 
about 3.6 times the still water depth for infinitesimal amplitude, and at finite 
amplitude the wavelength decreases as the amplitude increases. Therefore, shal- 
low water waves are concluded to be unstable even at infinitesimal amplitude, 
for which the assumption is accurate. Previously it has been argued that only at 
finite amplitude will shallow water waves change form as they propagate. The 
wave profile is found to be sinusoidal for infinitesimal amplitude and to be 
asymmetric at finite amplitude, the crests being higher and narrower and the 
troughs shallower and broader. These results are consistent with well-known 
theoretical work and laboratory measurements. 

1. I N T R O D U C T I O N  

A c o m b i n a t i o n  a n d  m o d i f i c a t i o n  o f  t w o  ex i s t ing  m e t h o d s  is a p p l i e d  to  

su r f ace  g rav i ty  w a v e s  o f  a rb i t r a ry  a m p l i t u d e  in w a t e r  o f  f ini te  c o n s t a n t  d e p t h  

in o r d e r  to  s t udy  the  p r o p e r t i e s  o f  s tab le  waves ,  such  as t he  p h a s e  ve loc i ty ,  

w a v e l e n g t h ,  a n d  w a v e  prof i le .  T h e  vas t  m a j o r i t y  o f  t h e o r e t i c a l  w o r k  on  

su r f ace  g rav i ty  w a v e s  b e g i n s  w i t h  the  a s s u m p t i o n  o f  i r r o t a t i o n a l  m o t i o n  

( p o t e n t i a l  f low) ,  bu t  t he  m e t h o d  g iven  b e l o w  is f ree  o f  th is  a s s u m p t i o n .  
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Also, available theories of  finite-amplitude waves almost invariably invoke 
some form of perturbation expansion, with the accompanying disadvantages 
that the convergence of the expansion is usually not proved and the solution 
obtained is normally not checked by independent means. In contrast to 
this, the present method allows the solutions for the wave properties to be 
obtained in closed form without the use of  perturbation expansions. The 
phase velocity is given by an algebraic expression, and the wavelength and 
surface elevation are determined by elliptic functions. 

The method used here is based on only minor adjustments to two early 
models, one contained in a little-known paper by Einstein (1916) and the 
other in a well-known paper by Lord Rayleigh (1876). Nevertheless, the 
following unexpected result is obtained: for a given still water depth and 
a given wave height there is only one stable wave, and furthermore the 
wavelength of  this wave is comparable to the depth. As a consequence of 
this result, it is inferred that true shallow water waves (wavelength >> water 
depth) must be unstable even for infinitestimal amplitude (amplitude<< 
water depth). Previously it was argued by Airy, who used a different analysis 
technique (Lamb, 1932, p. 278), that only at finite amplitude would a shallow 
water wave change form as it propagates. 

On the other hand, the result for the wave profile agrees qualitatively 
with past results, both theoretical and experimental. The wave profile is 
found to be sinusoidal at infinitesimal amplitude and to be asymmetric at 
finite amplitudes. The asymmetry is characterized by shallower and broader 
troughs and higher and narrower crests. 

The method proceeds in two parts as follows. First, the phase velocity 
is computed by adapting Einstein's (1916) model to water of constant finite 
depth. Second, by combining a small variation of a method due to Lord 
Rayleigh (1876) with the results of the first part, the wavelength and wave 
profile are calculated. 

The central assumption on which the results are based is that the 
horizontal components of the fluid velocity should be independent of depth. 
This assumption has often been made in past theories of shallow water 
waves and it is accurate for such waves at infinitesimal amplitude, which, 
however, are found below to be unstable. 

2. PHASE VELOCITY 

The phase velocity is calculated with the help of a useful physical 
model due to Einstein (1916). Consider a frictionless and incompressible 
fluid in a channel. The channel has a flat rigid bottom, a rigid corrugated 
top, and is uniform in the direction perpendicular to the cross section 
illustrated schematically in Figure 1. 
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Fig. 1. Fluid of constant density p entering a channel with steady horizontal speed u. The 
acceleration of gravity g acts down. The channel has a fiat rigid bottom and a rigid corrugated 
top. The "wavelength" of the corrugations is comparable to the mean water depth. The channel 
is uniform in the direction perpendicular to the paper. The fluid entirely fills the channel. 
Friction is neglected. 

When fluid fills the channel but is not flowing, there is a static pressure 
difference between crest and trough on the top surface due to the acceleration 
of  gravity. The static pressure is greater at the trough than at the crest 
because gravity acts downward. 

When fluid flows steadily through the channel, conservation of mass 
states that in unit time the same amount of fluid must flow through all cross 
sections. The fluid flows faster under the trough than under the crest because 
the vertical cross section is smaller below the trough than below the crest. 

I f  the acceleration of  gravity is not acting and fluid flows steadily 
through the channel, Bernoulli's principle states that the pressure is least 
where the speed is greatest (and vice versa), or 

p = const - lpu2 (2.1) 

where p is the pressure, p the density, and u the speed of  the fluid, and 
(2.1) holds along a streamline. Then there will be a dynamic pressure 
difference between crest and trough on the top surface. According to (2.1), 
the dynamic pressure is less at the trough than at the crest because the fluid 
speed is greater at the trough than at the crest, as required by conservation 
of mass. 

Finally, let the fluid flow in the channel and let the acceleration of 
gravity act downward. Then there will be both static and dynamic pressure 
differences between crest and trough, and they will be oppositely directed. 
Therefore, it is possible to balance the two oppositely directed pressure 
difference between crest and trough on the top surface by the right choice 
of  flow rate. When that balance occurs, the top surface of the channel can 
be taken away without change in the stationary "wavy" surface of  the fluid. 
The usual picture of  waves propagating over the fiat bottom, viewing the 
fluid in the reference frame that moves with the phase velocity of  the wave, 
is equivalent to the balanced channel flow. This is the essence of  Einstein's 
(1916) method, which we will now use for calculating the phase velocity. 
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The static pressure difference at the surface between crest and trough, 
Aps, is 

ap~ = pgH (2.2) 

where g is the acceleration of gravity and H is the wave height (Figure 2). 
In order to compute the dynamic pressure difference at the surface 

between crest and trough, the average height of the crest and trough above 
the bottom, kT, is introduced, which is to be distinguished from the still 
water depth h. The crest is then at the height/~+ H/2 and the trough is at 
h - H / 2 .  Next, the horizontal fluid velocities at the trough and crest are 
taken to be u + Aur and u -  Auc, respectively. Then the dynamic pressure 
difference between crest and trough, Apo, becomes 

Apt) = �89 + Aur) ~ - (u - Auc) 2] (2.3) 

Equation (2.3) comes from applying (2.1) to the surface streamline. 
Conservation of mass between trough and crest (without the constant 

density) is 

(u + A u r ) ( /~ - -H)  = ( u -  A uc)( /~+ H )  = uh (2.4) 

where uh relates to the mass flux at a position with no waves. From (2.4) 
follows 

Au-r H / 2 h + l - h / h  

u 1 - H / 2 h  
(2.5) 

Auc_ H / 2 h -  l + h/ h 

u 1 + H / 2 h  

c 

u- ~c ~ u + ~or t "  ........ ~'-- 

Fig. 2. Surface gravity wave viewed in the reference frame moving to the left with the phase 
velocity of  magni tude  c. The wave form remains stationary with respect to the observer and 
the fluid flows beneath it steadily to the right. The horizontal fluid speeds beneath crest and 
trough are u - A u  c and u+Aur, respectively, and the phase speed of the wave is given by 
c = u. The average depth of crest and trough is /'~, the crest and trough are a distance H/2 
above and below /~ respectively, and H is the wave height. The wavelength is comparable to 
the water depth.  The figure is schematic. 
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The central assumption has now been used in conserving mass in (2.4): the 
horizontal velocity components are taken independent of  depth below the 
crest and trough. 

Eliminate A u r  and A u c  in equation (2.3) with either (2.4) or (2.5) to get 

pu2(H/h) (h /h )  2 
Apo  - [1 - (H/2/~)2] 2 (2.6) 

Now balancing the static and dynamic pressure differences Aps = ApD 

between (2.2) and (2.6) yields 

(2.7) 

It will be shown below that for infinitesimal amplitude, (H/2/7)2<< 1,/~--> h 
and therefore (2.7) becomes 

u 2 = gh (2.8) 

The speed u in (2.7) and (2.8) can be interpreted to be the phase speed 
of  the wave c by moving in the reference frame with speed u. Then (2.7) 
is c 2 = gh, the well-known formula for the speed of small-amplitude waves 
in shallow water due to Lagrange (1869). 

The result (2.8) taken by itself seems to be a natural one in view of 
the main assumption used that the horizontal component  of  the fluid velocity 
be independent of  depth. This assumption is often used in the theory of 
long waves. However, the above derivation of  (2.8) is not at all familiar. A 
more usual way to derive (2.8) starts with irrotational waves of  infinitesimal 
amplitude in water of arbitrary constant depth and then proceeds to the 
shallow water limit (e.g., Barnett and Kenyon, 1975). Here we started with 
finite-amplitude waves in finite depth, assumed homogeneous flow below 
crest and trough but not irrotational motion, and then took the infinitesimal- 
amplitude limit. 

3. WAVELENGTH AND PROFILE 

The wavelength and profile of a stable wave are calculated by balancing 
the static and dynamic pressure differences, and conserving mass through 
the cross sections, between the trough and any arbitrary point along the 
surface from the trough to the adjacent crest (Figure 3). This is an extension 
of Lord Rayleigh's (1876) method to include the vertical component of the 
fluid velocity. 
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Fig. 3. Similar to Fig. 2, but illustrating the arbitrary 
point P on the surface and its elevation ~ relative to 
,~ The fluid velocity of  magni tude up is tangent  to the 
surface at P and is directed at angle 0 to the horizontal. 

The balance of static and dynamic pressure differences between the 
wave trough and an arbitrary point P on the surface is 

g ( 2  + ~) =I[(u+ AUT)2--U2p] (3.1) 

where the density has already been canceled out. The elevation ~" of the 
arbitrary point P is measured from the average height of crest and trough 
/~ The fluid speed tangent to the surface at P is Up. 

Conservation of mass below the trough and below P gives 

(u + A u T ) ( / ~ - H )  = up cos 0(/~+ ~) (3.2) 

where 0 is the angle between the surface tangent at P and the horizontal. 
In (3.2) the horizontal component of the fluid velocity has again been taken 
independent of depth, but the vertical velocity component has not been 
neglected. 

Eliminate Up between (3.1) and (3.2) to obtain 

1 - ( H / 2 / ~ )  2 
cos 0 - [1 + (H/2/~) 2 - 2~'//~] 1/2(1 + ~//~) (3.3) 

where u and Aur have been replaced by H, /~, and h through (2.5) and 
(2.7). Notice that (3.3) is independent of h. 

Relating cos 0 to tan 0 =O~/Ox and incorporating (3.3) results in a 
first-order differential equation for the surface elevation ff of a stable wave, 

1 H 2 2q_2,1] 1/2 0~'__ {[('~) -(~-)2] [3- (~-~) ~-J; (3.4) 
Ox 1 - (H/2/~) z 

as a function of the horizontal coordinate x and the given quantities H and 
/~ Equation (3.4) can be rewritten in integral form as 

- -  fY dt _x ( 1 - a  2) (3.5)  
/~- J-a {[a 2 -  t2][3 -a2+2t]} 1/2 

where a = H/2h, t = ~/h, -a  <-y<-a, and x is measured from the trough. 
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The wavelength A is twice the horizontal distance between the trough 
(y = - a )  and the next crest (y = a). From (3.5) then 

h =4(1-a)rl+a11/2L3-aJ F~,/~" k )  (3.6) 

where F(Tr/2, k) is the complete elliptic integral of the first kind and 
k2=4a/(1+a)(3-a)  (Byrd and Friedman, 1971, p. 77, #235.00). For 
infinitesimal amplitude, a << 1, equation (3.6) reduces to 

A 2~ 
h -x /3  =3"6 (3.7) 

because/~--> h, as will become clear shortly. For finite amplitude it can be 
shown from (3.6) that the wavelength decreases as the amplitude increases. 
Therefore, the maximum wavelength allowable for stable waves is given by 
(3.7), and it is only a small multiple of the still water depth. 

The wave profile ~(x) is obtained from (3.5) in the form x(ff) for given 
H and /~ by solving the incomplete elliptic integral of  the first kind for 
successive values of  y. The wave profile turns out to be sinusoidal for 
infinitesimal amplitude, and therefore /~= h. At finite amplitude it can be 
shown f rom (3.5) that the wave profile is not quite symmetric in that the 
crests become a little higher and narrower and the troughs shallower and 
broader  (consequently h > h). 

Once ~'(x) is found, then /~ can be obtained in relation to h by the 
requirement that over one wavelength there must be as much water above 

fh+C dzdx -- hA, giving /Y= h - ( l / A )  So x if(x) dx, where z as below h, or So x Jo 
measures distance along the vertical coordinate. 

4. DISCUSSION 

To summarize the results, we have described a direct approach for 
calculating wave parameters that is an evolution of  some work by Einstein 
and Lord Rayleigh. The main assumption about a constant velocity profile 
with depth is generally accepted in the theory of shallow water waves. 
Utilizing this assumption, we found that shallow water waves of  infinitesimal 
amplitude propagate with the well-known phase velocity (gh) 1/2, but that 
they are unstable. It is not possible to balance the pressure differences at 
the surface and conserve mass between crest and trough when the wavelength 
is much greater than the water depth. 

We also found that the profile of a stable wave of finite amplitude has 
narrow crests and wide troughs, as has been calculated with a perturbation 
expansion by Stokes and observed experimentally. These stable waves have 
a well-defined relation between wavelength and water depth, but are not 
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dispersive (the phase velocity is independent of  wavelength). It is reasonable 
to expect that when the main assumption about the constant velocity profile 
is relaxed to .include vertical shear, the phase velocity will depend on the 
vertical shear (which in turn will be related to the wavelength through the 
vertical fluid acceleration) and that is how dispersion will appear. Incor- 
porating a given shear into the calculation of  the phase velocity is not 
difficult, once we know which one to choose. (For an exponential shear, 
c - ( g X ) ' / ~ . )  

Th'e real convenience of  assuming that the horizontal component of 
the fluid velocity is independent of depth enters in Section 3 where the 
wavelength and surface elevation are calculated. It has not yet been found 
possible to make a simple estimate of how much the maximum wavelength 
allowable for stable waves in (3.7), for example, would change if a vertical 
shear were present, or to figure out how different the wave profile would 
be. Possibly an adaptation of the present method for numerical calculation 
could yield some insights here. 

One consequence of  the present model, in which pressure balances 
and mass conservation are only carried out within a single wavelength, is 
that it may not be necessary to view the stable wave we have calculated as 
an infinite wave train. Therefore the possibility exists that a similar method 
might apply to the solitary wave. 
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